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Abstract. The Hubbard model of an itinerant antiferromagnet (in particular, a Mott 
insulator) is considered. Starting from the generalised Hartree-Fock approximation, an 
expansion in the fluctuating part of the Coulomb interaction is developed. The magnon 
spectrum, corrections to the electron spectrum, the amplitude of the local moment and the 
total energy are calculated in the spin-wave region for arbitrary values of the Hubbard 
parameter U. A comparison with corresponding results within the framework of the s-d 
exchange model is carried out. 

1. Introduction 

The problem of describing itinerant magnets with strong Mott-Hubbard correlations 
is still being extensively investigated. Modern band theory (spin-density functional 
approach, usually using the local approximation) is apparently insufficient to solve it 
(see recent band calculations of transition metal oxides by Terakura et aZ(1984) and the 
discussion by Anderson (1988)). On the other hand, Hubbard's approach enables one 
to obtain easily the splitting in the paramagnetic region. However, this theory leads to 
serious difficulties in the treatment of the antiferromagnetic (AFM) ground state of the 
Mott insulator. In particular, the AFM cannot be obained self-consistently within the 
Hubbard-I (1963) approximation, and the corresponding electron spectrum contains 
four sub-bands (see, e.g., Khomsky 1970). A variational description of the AFM state 
and Mott transition within the generalised Hartree-Fock approximation was considered 
by Katsnelson and Irkhin (1984). 

In the present paper we provide a more accurate treatment of the AFM stale in the 
Hubbard model at low temperatures (in the spin-wave region). Using the generalised 
Hartree-Fock approximation as the zero-order approximation, we develop an expan- 
sion in the fluctuating part of the Coulomb interaction. This approach is a kind of 
perturbation theory in the inverse nearest-neighbour number 1/z. (Formally, each order 
in 1/z corresponds to a summation over a wavevector.) In § 2 we discuss the zero-order 
approximation and calculate the spin-wave spectrum. The results obtained are valid for 
arbitrary U's;  they describe both the limit of large U's (Anderson superexchange) and 
the RKKY limit. In 8 3 we obtain electron spectrum corrections due to electron-magnon 
interactions. In 0 4 we calculate the number of doubles (i.e., the local moment on a site) 
and the corresponding contribution to the ground-state energy. In the Appendix we 
consider the same problems for the case of the s-d exchange model and demonstrate 
that the models have similar properties. 
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2. Calculation of the spin-wave spectrum 

We proceed with the Hubbard Hamiltonian 

In an antiferromagnet with the magnetic structure corresponding to the wavevector K ,  
AFM ordering leads to splitting of the conduction band into two Slater sub-bands 
described by new electron creation operators, 

= A k C k = ~ / 2 ?  + B k c i - , / 2 J  

Within the generalised Hartree-Fock approximation, the AFM ground state of the Mott- 
Hubbard insulator is given by the trial function 

so that the lower Slater sub-band is completely filled and the upper one is empty. As for 
metallic states with partly filled Slater sub-bands, we have 

k<kF k 

The function (3) does not conserve the total spin z-projection and is therefore not 
quite satisfactory. This problem was discussed by Katsnelson and Irkhin (1984) who 
considered another trial function, which described an exciton condensate and was an 
eigenfunction of the operator S‘ (see also Vonsovsky et a1 1986). Using the exciton 
approach, we can investigate corrections to the Hartree-Fock zero approximation, e.g., 
spin-wave excitations (for a comparison see the consideration of the Heisenberg model 
by Irkhin and Katsnelson 1986). However, we shall exploit, for simplicity, the standard 
transformation (2) which introduces anomalous averages (c& C k - ,  ). 

Diagonalising the Hamiltonian (1) with the use of (2) we obtain two quasi-particle 
bands with the energies 

Here we introduce the notations 

nka = (@k’ a k )  = f(% k a )  nkp  = (bzbk) = f @ k p )  

wheref(E) is the Fermi function. The quantity 2Usis the direct energy gap. F O r A k ,  Bk,  s we obtain the equations 
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To consider properly the spin degrees of freedom, it is suitable to the local coordinate 
system by introducing the electron operators 

G o  = ( l / W 4 + K / Z T  + u c : - K / 2 1 )  U =  t ,  .1 (9) 
Then the Hamiltonian (1) takes the form 

where Sb is the Fourier transform of spin-density operators, 

st  = 2 dludk+q, -U , si = 4 udk+dk+qu 
k ko 

( (Sc)  = 3 is the sub-lattice magnetisation). 

Green functions 
The magnon spectrum is determined by the poles of the commutator retarded spin 

Ga(qw) = @~lS:,)),. 

The corresponding equation of motion reads 

wG'(qW) = 23 + ( ( (Ok+q  - dk+q& + rk+qd:T dk+qf - rkd:J dk+qJ lslq))w 
k 

(10) 
Expressing the operators dlo in terms of a:, p:, using (2) and representing the Ham- 
iltonian in the form 

we can construct aperturbation theory with respect to the fluctuatingpart of the Coulomb 
interaction 

Hint = - U A  S : , S i  
4 

(A means that the Hartree-Fock decouplings must be excluded when treating Hint). To 
first order, we may carry out decouplings of the type 

A((a: a k + p  si-, I s Z q ) )  L1 nkadflG"(q@)* 
Then we obtain the system 

[W - % ( q w ) ] G + ( q ~ )  = 2 s  + % ( q W )  + 9(qW)G-(qw) 

[U + %(q,  - o > l G - ( q o )  = q q w )  + w q ,  - w)G+(qw) 

where the functions %,9,%, % are linear combinations of the expressions 

(nki - n k + q ) / ( @  + g k i  - %k+qj>  (i,i = p). 
The magnon spectrum is given by 
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U ;  = %*((10) - %*((10). (13) 
On substituting the values of the coefficients A,, Bk, a little manipulation yields 

X 

First, we consider the narrow-band case, where ltkl 6 U. For the half-filled band we get 
(S = 1/2) 

U:  = 9 ( J K  - J q )  (U, - J K t q  - J,-J (15) 

Expression (15) has a form typical for the Heisenberg exchange, Jq being Fourier 
transforms of the exchange parameters. Thus we obtain a generalisation of the cor- 
responding result of Anderson's (1963) superexchange theory, derived in the nearest- 
neighbour approximation, where Ji, = -2t;lU. 

Now we discuss the case where U+ x and the upper sub-band is partly filled 
(the function ( 5 ) ,  n k a  = 1, nkp = nk = f ( e k ) ) ,  so that the current carriers induce a non- 
Heisenbergian double-exchange interaction. We have 

We retain here the Heisenbergian exchange J: (say, the superexchange (16), or another 
exchange interaction added to the Hamiltonian), which is needed to stabilise the AFM 
ground state. This expression coincides with that obtained within the s-d exchange 
model using the Hubbard (1965) X-operators (Irkhin and Katsnelson 1988~).  For the 
s-d exchange parameter 111 + CO, the latter model is equivalent to the Hubbard model 
in the quasi-classical limit where spin S 9 1 (Nagaev 1983), and also for S = 4 (with the 
replacement t k 3  t k / 2 ,  I < 0) .  For finite Uand Z both models have similar properties (see 
below and especially the Appendix), Because of the imaginary parts of the denominators 
in (17), spin waves acquire at T = 0 a large damping, which has only a formal smallness 
(yq /wq = const - l / z ,  q+ 0) .  

In the broad-band limit U 4 W (W is the band width), we expand expression (14) in 
U. We have ( f k  = f ( t k ) )  

U ;  = 2 S 2 ( J ,  - J q 0 ) ( 2 J d  - J,+,,0 - J,-,,O) (18) 
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This result coincides with that of the RKKY perturbation theory, in which l i s  replaced by 
U (Irkhin and Katsnelson 1988a). Thus, a RKKY-type exchange takes place also in the 
Hubbard model. Note that our approach yields an explicit expression for the magnon 
spectrum, unlike the RPA approach due to Young (1975) and Kuzmin and Ovchinnikov 
(1977). 

Expression (18) enables one to calculate the magnon damping y = -1mw if we make 
the replacementl,, + Jp,o+IO.  At small q and T = 0, yq/wq is a constant of order U2/W2.  
It is worthwhile to mention that the damping is absent in the case of an insulator (nka = 
1, n k f l  = 0), since only transitions between the sub-bands a and p make a contribution 
and Imw # 0 at 

U > min(%, - % k + q & )  = 6 

with 6 -- U2S2/W (US < W )  being the indirect energy gap. 

3. The electron spectrum 

Now we treat the electron spectrum. In the zero-order approximation we have 

so that the anticommutator electron Green functions have a two-pole structure. To find 
corrections due to spin fluctuations, we pass to the operators a&, /3k and write equations 
of motion, e.g. 

( E  - % k a ) ( ( a k i d : T  ))E = L:/z/z - A ( ( L k + ( L k , y a k + y  - “ k f + q P k + q ) s I q  
9 

+ k s +q ( L  k’+ q a k  + q + k+ q p k  + q I :? ))E ( L i  = A k  k B k ) .  (23) 
When calculating the Green functions, which arise, we may carry out to first-order the 
decouplings 

A ((s q s; d k  + q - p  , u1 :? )) E qpx f: (( dkul :? ))E xf: = (SLqS,,), 

and substitute (21) and (22). Then, according to the Dyson equation, the first-order 
corrections to the one-electron energies EkI are determined by the coefficients of the 
singular factor ( E  - % k r ) - 2  after substituting E + %k.. A similar procedure was used by 
Irkhin and Katsnelson (1988~) to investigate the electron spectrum in a ferromagnet 
with Hubbard sub-bands. We have 
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To calculate the spin correlation functions 
canonical transformation to magnon operators 

in the spin-wave region, we carry out a 

si = (2S)'/2(Uqbq - v,b+,) (25) 

[b,, H ]  = uqbq (bib,)  = Nq = N(w,) (26) 

x i +  = ~ S [ ( U ;  + v; )N,  + U ; ]  (27) 

U ;  - U ;  = 1 

xi- = -2Su,~,(l  + 2N4) 

where N ( w )  is the Bose function. As follows from (12) ,  (25) and (26) ,  the coefficients 
U,, U ,  obey the system 

( U ;  + vi)%(qO) - 2u,v49(q0) = 0 

- %u,u,%(qO) + ( U ;  + v ; ) q q O )  = 0 

so that 

Consider the temperature dependence of the electron spectrum due to magnons. One 
has to take into account the contribution to the sub-lattice magnetisation in the second 
term of (24) ,  

We obtain 

(31) 

Using (31) and (14) ,  it is easy to prove the relation 

SEki/SN, = 6wq/6nki = 62(H)/6NqSnki (32) 

(see also § 4) .  
It should be noted that, unlike the case of a ferromagnet (see, e.g., Irkhin and 

Katsnelson 1988c), the vanishing of the magnon frequency at q -+ 0 does not result in a 
weakening of the temperature dependence of the electron spectrum as compared with 
that of the sub-lattice magnetisation. This is due to non-linearity of the magnon spectrum 
in the electron occupation numbers. It is interesting that our perturbation theory yields 
finite corrections to the electron spectrum (as well as to the magnon frequency, see 
equation (17)) in the limit U-. w. For an almost half-filled band we get 
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(33) 

This result is in agreement with that following from the equations obtained by Irkhin 
(1986) within the narrow-band s-d model using the many-electron Hubbard (1965) 
operators. (However, the present method does not enable one to consider the case 
where 6 k  = 0, i.e., simple lattices in the nearest-neighbour approximation). On the other 
hand, at finite U (or I> the results of these two approaches are different since Hubbard 
I-type approximations give four sub-bands in a magnetically ordered state. The broad- 
band case, where U < W ,  is discussed in the Appendix. 

4. The number of doubles, local moment and total energy 

Finally, we investigate the spin-wave contribution to the total energy. To this end, we 
calculate the mean number of doubly occupied sites (doubles) Ne. This quantity is related 
to the mean square of the local moment by 

( S : )  = 3(n - 2 N 2 )  (34) 

with n the number of electrons per site. Allowing for the spectral representation, we 
have 
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with Pk = US/%k. 
The first term in (36) corresponds to the zeroth order in 1,’. (Hartree-Fock approxi- 

mation). It may be rewritten as 

( N Z ) H F  = i ( n 2  - 45’) (37) 
which coincides with the result by Katsnelson and Irkhin (1984). Taking into account 
the correction (30) in (37) and transverse spin-fluctuation contributions (other terms in 
(36)) we obtain the spin-wave contribution to the number of doubles 

S(n i tn , i  ) = ( l / u ) a ( ~ ) s w  = - ( 3 / ~ ) 6 ~ s w  = (1/u) E OqNq ( T / T , ) ~  
(38) 4 

S N 2 ( T )  = dSF,,/dU < 0 

where SF,, is the corresponding correction to the free energy. It enables one to calculate 
spin-wave contributions to various thermodynamic properties (e.g., elastic moduli). 
Integration gives 

S ( H ) , ,  = (n2/30)  u g  (1/c? + l/c;) T 4  

wq = c1q w,-q = c2q (4+ 0) .  

(39) 
where u o  is the lattice cell volume, the magnon velocities are defined by 

Now we consider the ground state energy of the Mott insulator ( n  = 1) in the case of 
large U. The Hartree-Fock contribution has the form (cf. Katsnelson and Irkhin 1984) 

E H F  = xtk(Ck+cko)HF f (u/4)(1 - 45&) = - ( l / q  E T i  = -(1/4)(J, - J O )  (40) 
ka k 

where the effective exchange parameters Jq are given by (16). For simple lattices in the 
nearest-neighbour approximation 

EHF = -z t2/U.  (41) 
Calculating the spin-wave contribution yields 

The zero-point contribution reads 

6 E , ,  = 4 2 (J, - Jq) l /*  [J, - $(J ,+q + J K - q  )I1” - ’ 2 J,. (43) 
4 

This correction is similar to that obtained by Anderson (1952) for the Heisenberg model 
and is of the order of 1/z. For a d-dimensional cubic lattice ( z  = 2 4  we have 

Ford  = 3, 
SE,, = -0.Q97JK/2 = -0.58t2/U 

(Anderson 1952). In the one-dimensional case (d = 1) 
(45) 



Spin waves in a Hubbard antiferromagnet 4119 

6E, ,  = (J,/2) (217~ - 1 )  = -0 .73t2 /U.  (46)  
The result for the total energy. 

E = EHF + E,, = -2 .73t2 /U,  

is in excellent agreement with the exact result by Lieb and Wu (1968) in the limit under 
consideration, 

E = - ( 4  In 2 )  t2/U = -2 .77t2 /U.  

Appendix: Comparison with the s-d exchange model 

Consider the Hamiltonian of the s-d model for an antiferromagnet (cf. Irkhin and 
Katsnelson 1988a) 

+ i S i ( c k t + q T  c k - K J  - cl-~J c k - q t ) l  (48)  
where Hd is the Heisenberg Hamiltonian of the localised spin system, Sb are the Fourier 
components of the spin operators in the local coordinate system, I is the s-d exchange 
parameter. If we pass to the local coordinate system also for electron operators (equation 
( 9 ) )  we obtain 

Hsd = -zx [ S : ( d h  di T - d A  ~ I J  ) + STdJ d i ,  + S;d:T d i J  1. (49) 
1 

In the Hartree-Fock approximation, the electron spectrum is given by 

%k,,p = 6 k  3 ( T i  + 12(S')2)112 (50) 
with (Sz)  = S the sub-lattice magnetisation. Writing the equation of motion for the spin 
Green function, we get 

On passing, as in ( 2 ) ,  from the operators dka to the operators &k, /&, which correspond 
to the new sub-bands (50),  and calculating the Green function on the right-hand side of 
(51 ) ,  we derive an expression for the magnon spectrum. This expression turns out to 
coincide with (14)  with the replacement U+ I ,  j+ S. 

The same replacement takes place for the electron spectrum (24) (of course, in the 
second term, s+ (Sz)). Specifically, in the limit where II) + m, we obtain 

E,, = - z ( S z )  - 12 ( N q  + nk+,p) = -I(s f np) 

Ekp = I ( S  + 1 - n,). 

(52) 

(53) 

4 

Note that our Hartree-Fock-type approximation yields correct 'atomic' values E = * I S ,  
kZ(S + 1 )  for the integers n,, np .  

In the case of small I (or U) it is more convenient to use the Hamiltonian in the form 
(48). Then we obtain in the second order for the magnon spectrum the RKKY result (18) 
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and (19). Calculating in the same way the electron spectrum (see also Irkhin and 
Katsnelson 1988b), we obtain 

(54) 

The third term in the square brackets, which is due to the sub-lattice magnetisation 
decreasing with T ,  leads to an increase in the band bottom ( t k  = tmi,). However, the 
contribution of the transverse spin fluctuations (two first terms) is of opposite sign and 
may prevail. So, in thecase where 6 k  = 0,J, t, (simple lattices in the nearest-neighbour 
approximation) the latter contribution is two times larger (Irkhin 1986). 
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